Compuational Fluid Dynamics for Incompressible Flows

Week-02 (Live Session)

Durga Prasad Pydi

2026-01-31

Accessing Live Session Materials

Live Session timings: 05:00 PM - 07:00 PM IST on every Saturday Meeting Link: Will be circulated to enrolled students on their registered email id

All live sessions will be recorded and can be accessed using below links

Recorded Lectures Session Written Notes Session Slides

For any queries regarding live sessions email to: me22d400@smail.iitm.ac.in

Any other queries: use the discussion forum on course website

Course Contents

  • Applications of CFD and brief recap of governing equations and boundary conditions
  • Classification of PDEs - elliptic, parabolic and hyperbolic - highlighting the relevance to CFD
  • Key qualifications for solvers and Finite difference method (FDM) as a tool to solve PDEs
  • Application of FDM
    • elliptic
    • parabolic
    • hyperbolic
  • Evaluating the learned strategies using techniques presented in 3
  • Alternate formulations of governing equation and their solutions
  • MAC Algorithm
  • Finite Volume Method using SIMPLE (last 4-5 weeks)

Concepts

Classification of Phenomena

For a general 2nd2^{nd} order PDE, defined as aϕxx+bϕxy+cϕyy=h a \phi_{x x} + b \phi_{x y} + c \phi_{yy}=h

The characteristics are given by dydx=b±b24ac2a\frac{dy}{dx}=\frac{b \pm \sqrt{ b^{2}-4ac }}{2a}

Discriminant: D=b24acD=\sqrt{ b^{2}-4ac } determines the classes of PDEs

  • D>0D>0
  • D=0D=0
  • D<0D<0

Water Ripples

Which PDE can describe this phenomenon?

Dye in Agar

Which PDE can describe this phenomenon?

Can you give an example of an elliptic phenomenon?

Problems

Question 1

The lines along which a partial differential equation reduces to an ordinary differential equation are called

Solution: Characteristic lines Consider ut+uxx=0u_{t}+u_{x x}=0 what are the characteristic lines for the above equation? dtdx=0\frac{dt}{dx}=0

Consider uttuxx=0u_{tt}-u_{x x}=0 a=1,b=0,c=1a=-1,b=0,c=1 b24ac=4>0b^{2}-4ac=4>0 dtdx=±1\frac{dt}{dx}=\pm{1}

Question 2

Which of these apply to parabolic equations?

Solution: They have one real characteristic line

Question 3

Which of these characteristics apply to hyperbolic equation?

Solution: finite domain of dependence and finite domain of influence

Question 4

The nature of the second order partial differential equation ϕt+αϕx+β2ϕx2=0\frac{ \partial \phi }{ \partial t }+\alpha \frac{ \partial \phi }{ \partial x }+\beta \frac{ \partial^{2} \phi }{ \partial x^{2} }=0

Solution: parabolic

a=β,b=0,c=0a=\beta,b=0,c=0 D=b24ac=0β×0×4=0D=b^{2}-4ac=0-\beta \times 0 \times 4=0

Question 5

The value of α\alpha for which the equation α2ϕx2+42ϕxy+22ϕy2=0\alpha \frac{ \partial^{2}\phi }{ \partial x^{2} }+4 \frac{ \partial^{2}\phi }{ \partial x \partial y} + 2 \frac{ \partial^{2} \phi }{ \partial y^{2} }=0 becomes parabolic is

Solution: 2

424×2×α=0α=?4^{2}-4\times 2 \times \alpha=0 \implies \alpha=?

Question 6

The steady compressible flow defined by (1M2)2ϕx2+2ϕy2=0(1-M_{\infty}^{2})\frac{ \partial^{2}\phi }{ \partial x^{2} }+\frac{ \partial^{2}\phi }{ \partial y^{2} }=0 becomes hyperbolic under the condition

Solution: M>1M_{\infty}>1

04(1Minf2)>00-4(1-M_{inf}^{2})>0 \implies Minf>1M_{inf}>1

Question 7

The Tricomi equation y2ux2+2uy2=0y \frac{ \partial^{2} u }{ \partial x^{2} }+\frac{ \partial^{2}u }{ \partial y^{2} }=0 shows elliptic nature under the condition

Solution: y>0y>0

04y<00-4y < 0 \implies y>0y>0

Question 8

The following system of equations is classified as ut+8vx=0vt+2ux=0 \begin{align} \frac{ \partial u }{ \partial t } +8 \frac{ \partial v }{ \partial x } & =0 \\ \frac{ \partial v }{ \partial t }+2 \frac{ \partial u }{ \partial x } & = 0 \end{align}

Solution: hyperbolic

2D NS : u,v,pu,v,p continuity x & y momentum ux+vy=0u_{x}+v_{y}=0

U=(uv)U = \begin{pmatrix}u \\ v\end{pmatrix}, Ux=(uxvx)U_{x}=\begin{pmatrix}u_{x} \\ v_{x}\end{pmatrix} Ut+AUx=0U_{t}+AU_{x}=0 A=(0820)A=\begin{pmatrix}0 & 8 \\ 2 & 0\end{pmatrix}

First eqn wrt t and then second eqn wrt x ut+8vx=0u_{t}+8v_{x}=0 utt+8vxt=0u_{tt}+8v_{xt}=0

vt+2ux=0v_{t}+2u_{x}=0 vtx+2uxx=0v_{tx}+2u_{x x}=0

vtx=vxtv_{tx}=v_{xt} utt16uxx=0u_{tt}-16u_{x x}=0 04×16>00-4 \times -16>0 \implies hyperbolic

Calculate eigen values for matrix A λ28×2=0\lambda^{2}-8\times{2}=0

Question 9

The nature of the following Cauchy-Reimann equations is ux+vy=0vxuy=0 \begin{align} \frac{ \partial u }{ \partial x } + \frac{ \partial v }{ \partial y } & =0 \\ \frac{ \partial v }{ \partial x } -\frac{ \partial u }{ \partial y } & =0 \end{align}

Solution: elliptic

U=(uv)U=\begin{pmatrix}u \\ v\end{pmatrix}

Ux+AUy=0U_{x}+ A U_{y}=0 where Ux=(uxvx)U_{x}=\begin{pmatrix}u_{x} \\ v_{x}\end{pmatrix} and Uy=(uyvy)U_{y}=\begin{pmatrix}u_{y} \\ v_{y}\end{pmatrix}

A=(0110)A=\begin{pmatrix}0 & 1 \\ -1 & 0\end{pmatrix}

characteristic equation for matrix AA: λ2+1=0\lambda^{2}+1=0 eigen values for AA are ±i\pm i

Question 10

The following system of equations is classified as (β\beta has real value) β2uxvy=0vxuy=0 \begin{align} \beta^{2} \frac{ \partial u }{ \partial x } -\frac{ \partial v }{ \partial y } & =0 \\ \frac{ \partial v }{ \partial x } - \frac{ \partial u }{ \partial y } & =0 \end{align}

Solution: hyperbolic

U=(uv)U=\begin{pmatrix}u \\ v\end{pmatrix}

Ux+AUy=0U_{x}+ A U_{y}=0 where Ux=(uxvx)U_{x}=\begin{pmatrix}u_{x} \\ v_{x}\end{pmatrix} and Uy=(uyvy)U_{y}=\begin{pmatrix}u_{y} \\ v_{y}\end{pmatrix}

(uxvx)+(abcd)(uyvy)=0 \begin{pmatrix} u_{x} \\ v_{x} \\ \end{pmatrix} + \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} u_{y} \\ v_{y} \end{pmatrix}=0

A=(01β210)A=\begin{pmatrix}0 & -\frac{1}{\beta^{2}} \\ -1 & 0\end{pmatrix}

λ21β2=0\lambda^{2}-\frac{1}{\beta^{2}}=0

β\beta \in \mathbb{R} \implies λ\lambda \in \mathbb{R} so hyperbolic

Thank You

Go to Home