A flat sheet (tabular) iceberg drifts over the ocean as it is driven by the wind that blows over the top. The temperature of the surrounding seawater is 10° C, and the relative velocity between it and the iceberg is 10cm/s. The length of the iceberg in the direction of drift is L=100m Calculate the corresponding wind velocity when the atmospheric air temperature is 40° C. (Make suitable assumptions to simplify the problem and state them).

```
In[•]:= TMeanAir = \frac{40+0}{2}; TMeanWater = \frac{10+0}{2}; L = 100;
        water = \{\mu \rightarrow ThermodynamicData["Water", "Viscosity",
                 {"Temperature" → Quantity[TMeanWater, "DegreesCelsius"]}][1],
            ρ → ThermodynamicData["Water", "Density", {"Temperature" →
                    Quantity[TMeanWater, "DegreesCelsius"]}][1], U \rightarrow 0.1, x \rightarrow L};
        air = \{\mu \rightarrow ThermodynamicData["Air", "Viscosity",
                 {"Temperature" → Quantity[TMeanWater, "DegreesCelsius"]}][1],
            \rho \rightarrow ThermodynamicData["Air", "Density",
                 {"Temperature" \rightarrow Quantity[TMeanWater, "DegreesCelsius"]}][1], x \rightarrow L};
       Re_x = \frac{\rho U x}{\mu};
       Cf_x = \frac{0.0624}{Re_x^{1/5}};
       Cf_L = \frac{1}{L} \int_{-L}^{L} Cf_x dx;
       F_D = \rho U^2 L \frac{Cf_L}{2};
 In[\circ]:= eqn = Simplify[(F<sub>D</sub> /.water) == (F<sub>D</sub> /.air), x > 0]
Out[0]=
        1. U^{9/5} = 8.03215
 In[*]:= Solve[eqn, U] [1] [1] [2] + 0.1
          (*the solution will be only the relative velocity so 0.1 is added*)
Out[0]=
        3.28188
```